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FOREWORD 

T h  c p r i n c i  pa 1 ohj c ctivc of C on t r ac  t NAS 8 - 20 3 23,  I' R c  s ea rcli 

i n  StitI)JI i l y  of  I'criodic Motions," is to der ive  cxact  nna1ytic;il results 

concerning the degree  of instability of cer ta in  periodic orbi ts  in the 

res t r ic ted  three  -body problem. 

required the assimilat ion of background ma te r i a l  before specific as - 
pects  can be studied. 

The specialized nature  of this problem 

This report  covers  such mater ia l .  

This investigation was performed by Lockheed Missi les  & Space 

Company, Huntsville Research & Engineering Center  for the Aero-  

Astrodynamics Laboratory of the George C. Marshal l  Space Flight 

Center ,  Huntsville, Alabama. 
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Lorkheed Missi les  k Space Company, Huntsville Research k 

1~;ti~:iiivpriiig C ~ i i t c t '  ifi g r ~ a l l y  iiitl(*l)lctl t o  i)r. 11. 1". Arcanstorf of the 

Cornpiitation Laboratory of Marshall Space Flight Center  who, in 

many discussions,  made  LMSC personnel aware  of the mater ia l  con- 

tained herein and explained many mathematical  and technical points. 

Fu r the r ,  much of this mater ia l  was covered by Dr.  Arenstorf during 

a n  evening course  in Celestial Mechanics given a t  the University of 
Alabama in Huntsville in  the  Fall Quar te r  of 1966. 
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S IJ MMA HY 

'The stability of periodic orbits of t h e  res t r ic ted three-body 

1 ) r o t ) l c - i i i  is r l i R r t i s s m l .  

necessary  background mater ia l  is developed. 

Av;i i1aI) lv  tpcljt i iqi ic*s  R r e  p r ~ s c n l ~ d   AIM^ the 

The existence of periodic solutions of the res t r ic ted  three-  

body problem is  developed from f i r s t  principles.  Start ing with 

Newton's gravitational law and equations of motion the proof is 

developed via the Lagrange and Hamilton equations of motion, 

existence theorem for  differential equations, the two and three-  

body problems. 

iv 
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Section 1 

INTRODUCTION 

Before a periodic orbi t  (o.g., one enclosing the Ear th  and Moon) 

becomes uscful for space exploration, we must  know something of i t s  

stabil i ty charac te r i s t ics .  

s table  but r a the r  deviate slowly from the initial or intended orbit. 

this caee,  we ta lk  about the lifetime of an orbit. 

increased  significantly by l tcorrectinglt  the orbi t  periodically,  providing 

sufficient energy is available. 

with the techniques available for determining the stabil i ty characteristics 
of such  orbi ts  and how they may be applied. 

To be useful, a periodic orb i t  need not be  , 

In 
This l ifetime may be  

The intent here in  is to  f a m i l i a r h e  one 
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Section 2 

TECHNICAL DISCUSS ION 

2 . 1  T3ASiC: MECTTANICS 

The f i r s t  s tep  in  establishing a mathematical  approach to  celest ia l  

These laws, based  upon mechanics  is the acceptance of Newton's laws. 

observat ions made during the l a t e  sixteenth century and e a r l y  seventeenth,  

have proven to be  only a f i r s t  approximation to Einstein 's  re la t ivis t ic  laws,  

but i n  fact  the ina.dequacies of t h e  sys tem,  so  far as ce les t ia l  mechanics is 

concerned,  a r i s e  a s  much f r o m  the difficulty of the measu remen t  of distance 

and  t ime  a s  f rom the relat ivis t ic  connection between the pair .  

We begin, then, by assuming the concept of time, and take as its m e a s u r e -  

ment  what is known as ephemeris  time r a the r  than universal  t ime  and define 

absolute space  as any space  in which Newton's laws hold. 

we have divorced ourse lves  f r o m  the r ea l  world,  even though we do not know 

jiist what i s  the r e a l  world,  but, i f  we note that  the advance of the perihelion of 

M ~ , r c ? ? r y  is sorr.e 43 secc?ids c?f a r c  p e r  cefiti-lry, we dn not feel that we a r e  e n  

far renioved f r o m  rea l i ty  that our  approach is use less .  

To be r igorous,  then, 

Now briefly,  Newton's second law s ta tes  that  for  constant mass, the 

product  of the m a s s  and the accelerat ion is equal to the applied external  force. 

This gives the fami l ia r  equation 

(i = I , . . . ,  n )  Fi m . ? .  = 
1 1  

where n is the number of par t ic les  in the system. 

2 
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JIis gravitational law allows us to compute F.. It s ta tes  that the force 

bctwcen any one  body of a sys tem and a second body is direct ly  proportional 

to the product of their  m a s s e s  a n d  inversely proportional to  the square of the 

tlistanccg bctwcen t h e m ,  ac ts  along thc Rtraight line joining their  cen ters  and 

is iridcpcnclent of any other forces  acting. 

force,  

1 

This allows us  to write that the 

acting on the ith particle due to  the j par t ic le  is just  Fij,  

where rij is the position vector of m 

ri, r j  being the position vectors of mi and m 

a r b i t r a r y  origin. 

relative to mi (i.e., r i j  = r j  - ri), j 
respectively,  re la t ive to some j '  

The total gravitational force  on the ith part ic le  is then 

r j  - r i /  
Fi = -ymi 

and Newton's equations of motion become 

Now we m a y  show by differentiation that the force  F is a gradient of i 
a scalar function. By way of definition, we wri te  

Fi = -grad V 
i r 

where grad  V = (Vx., V , Vz.). V is called the potential function o r  
1 1 Y i  1 

r. 

potential energy, and we s e e  that 

3 

(5 )  
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W e  d e f i n e  the kinetic energy T to be 

The ten classical  integrals  give u s  the preservat ion of l inear  momentum, 

angular  momentum and total energy (T f V). 

take the origin a t  the center  of mass of the sys t em without changing the f o r m  

of the equations, which we shall  do. 

The first of these allows us  to 

Before continuing with the derivation of the two- and three-body problem 

f rom the general  n body problem, we shal l  d i scuss  the Lagrange and Hamilton 

formulations as equivalents to Newton's equations of motion. 

usefulness of these formulations will b e  demonstrated in l a t e r  sections. 

The power and 

We define the Lagrangian 

L = T - V  

and see that 

- - = m.g.  
d t  ( 8 L )  1 1  

and 
x. - x 
-1 -i LL = - -  8 V  5 - y  m i x m j  

IZj -i - a X. a x. 
-1 -1 

j f i  

4 
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for  -xi = xi, yi, zi and i, j ... - 1, ..., n .  

We have then 

‘To iiiakc this m o r c  gcricra.1, w c  conaidor a non-singular t ransformation of 

the xi, yi, z .  (i = 1 , .  . . n)  to what we call general ized coordinates q 
we have 3n  Cartesian coordinates,  s o  we requi re  3n general ized coordinates 

qj , provided no constraints  are  placed upon the motion, for  the t ransformation 

to be non-singular. 

Now, 
1 j *  

Let us  consider a t ransformation of the f o r m  

then 

We s h a l l  prove the f o r m  of the equations is invariant  b y  d i r ec t  evaluation. 

The first t e r m  of Equation ( 1 )  is 

* 
s ince  x. is independent of the ;1 and 

-1 S ’  

5 
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The 1st  and 3rd t e r m s  of Equation (1 1) combine to give zero  on using Equation 

( 9 ) on the following fact: 

Le., 

A l s o  using the 

a cancellation 

gives 

above fact and a reversa l  of the o r d e r  of differentiation allows 

of the 2nd and 4th terms.  Substituting these into Equation (1 1) 

i.e., the form of the equations is  invariant. W e  notice, in  general ,  that  the 

.2 s y s t e m  is not f i r s t  o rde r ,  f o r  L contains a t e r m  q, and so 

On introducing the Lagrangian derivative 

a - -  - -  
&x. dt ( " j )  i3x P x  j ' 

J 

we may  wri te  Equation (12) a s  
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The next s tep  is to  introduce the Hamiltonian system. W e  define the 
canonical momenta pa by  

( a =  l , . . . , n )  (13)  
a L  

P a  = - 8 4 0  

Now we put 

= cr)cyiiCl Ly - L 

where  we consider  H a function of p a ,  qa 
solving Equation (13) for  c&, and substi tuting in Equation (14). 

as a function of p, q by L". 

(a = 1, .  . . , n). This is accomplished on 

W e  denote L 

Now 

aL 

The first and second t e r m s  combine to give ze ro ,  and the third t e r m  is jus t  

p a  and so  by  Equation (9). But - = a L  
d t  8 4 ,  a q, 
-I- 

d ' 
H = - p a  ( a =  1, ..., n) . 

qu" 

Now we consider  

second term, s ince  

W e  have then, the 2n equations 

7 
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(a = 1,. e .  , n )  

&& = - I i  
g a  

to descr ibe  our  system. 

nintion,  or aometimes,  the canonical eqiiations of motion. Providing we 

r C I  H t I *  i c -  t 011 I' H 01 vc H to t i 0  i t  H i 11 t i  la  I- 1. r ;I 11 H f'o r t ria t ioii B t 11 rough 011 t , wc ca n r c tu r 11 

via the inverse  t ransformations to  our original sys t em of Newtonian equations. 

These equations we call Hamilton's equations of 

fnvariance of the Hamiltonian Eauations 

We define a canonical transformation of the variables pa, q, (a = 1, ... , n )  

as one which p rese rves  the fo rm of the Hamilton equations. We now rename 

our var iables ,  which is in real i ty  an identity transformation, and consider a 

sys t em of the Hamiltonian equations 

k = H  
Y i  (i = 1,. . . , n )  . i 

'ji = - Hx 
i 

We define the column vector z with 2n elements z. (i = 1,. . . ,2n) 
1 

by zj = xj, zj+n = y 
z to f with f i  = ti and 

( j= l ,  . . . ,n). Formal ly  then, the t ransformation f rom 

= vi (i = 1,.  . . , n)  may  be writ ten 

(17) * = z ( f ,  t ) .  

In o r d e r  to ensure  the existance of the inverse  t ransformation,  we requi re  

the ma t r ix  of par t ia ls  

to be  nonsingular. 

equations is to introduce the 2n x 2n matrix J, 
Our last prepara tory  s t ep  before  transforming L e  

8 
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= (pi :) 
where  I is the n x n identity matrix. We notice that 

* 
J - l  = - J  = J T . 

We may  now wr i te  our equations of motion as 

(19) k = J H  z 

where  H, is the column vector with 2n elements  HZi = Hx.,  Hzi+n = H  
1 Y i  

(i = 1,. 'n). 

Now 

where  the * quantity denotes that  i t  is considered a function of ( t ,  t). But 

the f irst  t e r m  on the right hand s i d e  is ju s t  the ith t e r m  of the column vector 

M- 'z: . W e  may  wr i te ,  then 

The general. term H, must  now be t ransformed.  We  have 
i 

and tZ is jus t  ( z  ) -I = M-,' and so  Equation (19) becomes  
t 

9 



* 
: , i = M J M  H -at T * a z  

To prese rve  the f o r m  of the equations, we must  be  able to wri te  in the 

i =  J I I t .  

f o rm 

(22)  
- 

We now equate the right hand sides of Equations (21) and (22) and multiply through 
by -J to give - T *  * 

H t  = - J M J M  H t  t J z t .  

T * * 
Clearly,  i f  M J M  

Rc,  then we have 
= J and -Jz is a gradient,  i.e., -J zt can  be  writ ten as t 

N * 
H = H  - R .  

* 
t 

If our  t ransformation is conservative, then z = 0 and 

T 
We have shown above that M- J M- = J and - * 

t 
z a gradient is a 

eldficient condition for  a transformation to be  canonical. 

we should note that in the l i terature ,  we frequently find that a canonical 

t ransformation is defined somewhat m o r e  generally by 

Before proceeding, 

M J M T  = p J  (24) 

where p is a constant different f rom zero ,  and the c a s e ,  p = 1 is called 

s yinplectic. 

Now that we have this r e s u l t ,  we prove the following interesting resul t ,  
namely,  that  eve ry  function v = v (x, q )  generates  a simplectic t r ans -  

provided det (v ) # 0 .  
r lX 

for  mation, Y = V X ,  5 = V q v  

10 
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When we s a y  this genera tes  a t ransformation,  we mean that  we solve 

4 = v, for  x, hence the condition det (v ) f 0, and wr i te  V X  

x = w4, r l )  

and substi tute for  x in y = v to obtain 
X’ 

We must  prove that the final matrix in Equation (27) is jus t  J. 

FromEquat ion  (26), we have, on taking the par t ia l  der ivat ive with r e spec t  

t o  4k 
n 

$k(j c v x  x ‘Pr4j (j, k =  1, ... , n )  
r= 1 k r  

th which is ju s t  the element  in the k column of jth row of k CP and so  xx 4’ 

Next consider  
n 

which is the k, j e lement  of 

11 
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w h e r e  I is  the unit mat r ix  of order  n. 

Equation (28), $6. 
pendent, therefore ,  using arguments s imi la r  to the above 

This gives us  V, 

Now, our new coordinates a r e  4 ,  q 
and, on using 4 
and a r e  inde- 

0 = t q  = vqx (rq -t v q t  I 

II,o = vxxvq i- V x q '  

and, nil connidoring II, (k = 1 , .  , . , t i ) ,  we derive k 

Using Equations (28)  through (31 )  to evaluate t h e  final mat r ix  of 

Equation (27) gives 

m m 

since v is symmetr ic ,  
XX 

m rn 

since v is symmet r i c ,  
x17 

= 0 .  T 
V' "xy 

Now t k  = v (cp, Q, t ) ,  but this has to b e  t rue  €or all sys t ems  of 

equations and a t  all points, so  the par t ia l  derivative of { 
t ime is zero,  i.e., 

'k 
with respec t  to k 

t v  
'lkt 

(k= 1, ..., n)  - 

But this is jus t  the kth t e r m  of the column vector v CP t vVt = 0. qx. t 

rlx A lit t le ma t r ix  a lgebra and u s e  of the condition det (v ) f 0 gives 

-1 
,x Vq t  q, = " V  

12 
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Now 

but I(lk is a function of x, r,~, t ,  a n d  so we must write  

A brief review is probably in order  h e r e  so that we real ize  c lear ly  

what we a r e  attempting, We have a Hamiltonian sys t em 

z = J H Z ,  

which we a.re transforming to < = J Gs by the transformation 

which imp1 ies 

x = v(5, 17, t ) ,  Y = w, v ,  t ) .  
T B y  d i rec t  substitution, we have t = JEc  - M Jz , .  We wish to show 

We have at our  disposal 

-1 - 
<pt - -vrlxvy)t 9 9, = VXX (Pt + Vxt ' 

which gives 

1 3  



80  that 

~~ 

LMSC/HREC A783816 

and from Equation (31), 

T - 1  T - 1  v + v  v I - ( p ~ v x x v r l x  rlt xq r lxvqt  

14 
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W e  have a l s o  i ised that v = v a symmetr ic  matr ix ,  Our final x rl rlx 
r e a i i l t ,  then, i s  that 

= v (x,  rl ,  t )  9 tk = v (x, rl, t )  (k= 1, ..., n)  
k 'lk 'k X 

defines a canonical (syniplectic, i f  we allow /.I f 1 )  t ransformation,  such 

tlja t the new Fiamiltonian is 

This method of generating a canonical t ransformation will be used l a t e r  

in  the normalization of the Hamiltonian, W e  notice that v (x ,  q ,  t )  is 

a r b i t r a r y ,  provided v exists and i s  nonsingular. In par t icular ,  we may 

expres s  v(x, V ,  t )  as a convergent power s e r i e s  in x, q .  In our  l a t e r  studies,  

w e  shal l  generate the power se r i e s  te rmwise  in the hope that i s  is convergent, 

w 

Thic concludes our discu ssion of fundamentals of mechanics. 

2.2 DIFFERENTIAL EQUATIONS 

W e  now wish to  prove a n  existing theorem for differential equations. 

Not enl- y **.;11 "",.A we -rove tJ the existance of a solution, h ~ i t  give a constri-irkion 

of the sol.ution which is readily adopted to numerical  computation. 

L e t  y = ( y l ,  . . . , yn), ycCn and l e t  f ( t ,  y )  he a vector with elements  

functions of t ,  and again f( t ,  y )  CC . W e  define the no rm of a vector y as n 

where  Cn denotes the s e t  of a l l  continuous functions with cont 

up to and including the n th , 

nuous d e r  

15 
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By the differential equation 

+ = f ( t ,  y) (34) 

we mean the n f i r s t -o rde r  differential equations 

' = f .  ( t ,  Y1"'"Yn) 5 ( j  = 1, ..., n ) .  
'j J 

W i t h  the prococrling dcfinitinns, wc may now Rtatc our  theorem: 

Le t  f ( t ,  y) be continuous a n d  uniformly Lipschitz-continuous with r e spec t  

to y in  B: t C  <, 
and llf(t, yljl - < M on B and ML - < b, 

y = y(t)  on  < with y(to) = yo . 
lly - yell 5 b , where { i s  a rectifiable curve  of Length L, 

Then y = f (b ,  y)  h a s  a unique solution 

Before proceeding with the proof,  we consider  br ief ly  the implications 

of s o m e  of the requirements .  The Lipschitz condition with r e spec t  to y, o r  

a s  we have called it, uniformly Lipschitz continuous, i t  that 

* 
f o r  t, y, y , c B ,  

< b (we ca l l  Bo a ball  center  yo * - that  fo r  all t c t ,  y, y c B o  = IIy - yoII - 

radius  b ,  and by  z we mean a defining equation) 

where K is a constant independent of t ,  y, y*. This means  

Ilf(t, y) - f ( t ,  y'")II 
IIY - Y*ll 

is bounded, y f y* of course.  The Lipschitz condition is sat isf ied if 

) exis t s ,  in which case  we may wr i te  

96 
f o r  y, y e Bo . 
Let y be  a n  a r b i t r a r y  vector ,  such that llyll 
of a matrix M as 

We mus t  now define what we mean b y  the n o r m  of a matr ix .  

Then we define the n o r m  1. 

(36 )  

W e  do this ,  s ince we would l ike 

16 
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wherc  M and N are matr ices .  

a ma t r ix  do not sat isfy this condition, for  example IIMII = max m. .  does not. 

We should show that llxll, x a vector, has the s a m e  value under the definition 

of no rm of a vector and as n x l  matr ix ,  this is obviously so from Equation (37). 

Some obvious ways of defining the no rm of 

I 1JI 

To prove the theorem,  we begin with defining 

and 
L 

where  denotes that, the integration path is along the curve  2 , Now 

F u r t h e r ,  all the yn a r e  continuous on  2 . 
that  

W e  will now prove by induction 

a s ta tement  which we denote b y  S and L( t )  length of that  p a r t  of &! 

t f r o m  to to t. Since 
n' 

6. 
Equation (3?)  is t rue  for n = 0. 
To prove that such is t rue ,  consider 

We m u s t  now show that i f  Sn, then Sntl. 

t 

liYnt l ( t )  - Y*(t)l/ - - l l# [f(t9 Y n W )  - f(t9 Y,-1 (t,ll dtll ' (40) 
t o  

Now 2 is a curve  and s o  by  definition i t  has a pa rame t r i c  representat ion,  

v t e E ,  t = t ( z ) ,  0 < T <  1. T h e  right hancl s ide  of Equation (40) becomes 
- I  

17 
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where the upper l imi t  ,T,of the integration is the value of Z such that  

t ( z )  
we used a dummy variable,  O C ,  say, 

t" (Th ie  would be loss confuRing i f  instead of 7 under the integral  

Now we havc a r e a l  integral  a n d  so we can apply the estimate appro-  

p r i a t e  for the no rm of such a n  integral and obtain 

where  t t t('2f). Hence applying the Lipschitz condition and S n' 

We have then, that  

i.e., Snt l '  and our  induction proof is complete. 

W e  now use  this r e su l t  to  obtain that 

CcI 00 Kn Lnt 1 

~ ( ~ r > + l ( t )  n: 0 yn(t$ < M c n= 0 (n+1) !  

cl) 

s o  that (ynt (t) - yn(t)) is uniformly and absolutely convergent for  

n=O 
t CB, Now consider  the partial  sums of Yn 

18 
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which a r e  just  Yk. That Equation (45) is absolutely and uniformly convergent 
i m p l i e e  that yk(t) + y ( t )  uniformly, and 8 0 ,  since f ( t ,  y) is continuous, this  

implies that f ( t ,  yk(t)  ) ‘l’liformly~ f ( t ,  y(t)  ) , Finally, s ince 
on x 

holds fo r  gn(t) uniformly convergent to g(t)  on , we have f r o m  
e 

that  

t 

Y(t) = yo t Jf f ( t ,  y(t)) dt . 
. to 

Since for  t € we can  write t = t (T) ,  T E R, the derivative ;(t) 

exis ts  and 

More generally,  i f  we have 
+(t) = f ( t ,  y)  , so our solution sat isf ies  the equation we s ta r ted  with. 

W 

we wouid requi re  that f ( z )  be hoiomorphic on  some  s imply  connected domain 

D for  gqw) = f(w) , 

t = t ( T ) ,  t c R .  

W e  do not require this s ince we confine t to a curve  

We now consider  the implications of supposing that f ( t ,  y)  is holomorphic 

f i r s t  of all on 2 , 11 y - yell 5 b } = B . B i s  a closed bounded s e t  and so 

f ( t ,  y) is bounded and the par t ia ls  exist and are  bounded on B. 

dispence with the Lipschitz condition and our  resu l t s  hold. NOW suppose 

f ( t ,  y) is holomorphic on It - tol 2 r ,  0 y - yell - < b ,  then f ( t ,  y) is holo- 

morphic  on eve ry  curve  in It - t0l 5 r and fo r  lly - yo\\ 5 b,  in par t icular  

on eve ry  radius of It - tol - < r. Therefore ,  the solution exists on It - t o (  5 r 

and is holomorphic and therefore  is unique. 

I 
W e  can then 

The solution has a power series 

19 
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expansion in  (t - t ), and i t  i s  possible to es tabl ish this in  the f o r m  of a 

Taylor  S e r i e s  which is convergent in the c i r c l e  I t  - t I < r at least .  

F u r t h e r ,  the solution can be constructed f r o m  

0 

0 -  

t 

Yn + 1 (t) = Yo + g f ( t ,  Y n W )  dt  

W c  can ;ilso U H C  this ~ o l u l i o n  l o  cstinlatc how far y d c v i ; ~ t ~ s  f rom 

yo i n  a given time. 

IIy - yo/I < b provided t E 6c . 
as possible,  but we have the condition ML < b to be  sat isf ied so that we 

m u s t  ensure  that  M is as small a s  we can  make it, and then we have that  

b is determined f r o m  ML < b. 

the principal p a r t s  as in  the perturbation theory of n-body problem. 

have then tha t  the solution deviates a distance < ML f r o m  the initial point; 

this  is the sha rpes t  approximation available. 

We have seen that yn(t) C Bo, s o  the solution sa t i s f ies  

Now, in general ,  we want as long a t ime path - 
- 

To ensu re  that M is small, we subt rac t  off - 
We 

- 

We shal l  now consider a s e t  of autonomous differential  equations 

j ,  = f ( Y )  

Any non-autonomous sys t em can be wri t ten in autonomous f o r m  as follows: 

l e t  Yn+l = t and replace y b y  7 = (yl,.  . . , yn, yn+l )  and f b y  f = ( f l ,  . , f,, 1 ) .  
Then the s y s t e m  of non-auioiioi-ious equat iom becomes 

N 

Now, consider  the s y s t e m  

j, = f(x) 

with a soliltion x = x(t)  holomorphic on a cu rve  

t . to is the initial point. Le t  K be the s e t  of 

all x = x(t), t E. 

less its end point * 
- t*. Assume f(x) i s  holo- 

rnorphic on a closed and bounded se t  s E Cn, which to 1 
contains K,  K C s. Note that  K is not a cu rve  

under  a r igorous definition, since i t  has  no end 

point. We shal l  r e f e r  to it as a curve f o r  sim- 

plicity. 
.c 

K is called the t ra jectory €or the init ial  

20 
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conditions to, xo. 

prove that x( t )  is holomorphic at t = t*, hence a l so  holomorphic in  a 

neighborhood of t* and therefore  continuable to t , 

known as thc Thcorern of Poiilleve/. 

The trajectory is  contained in the s e t  s. We shall  now 

* 
This proposition is 

Wolomorphic on a s e t  holomorphic a t  each point of the set. To 

b c  Iiolo~norpliic a t  a point, a Iuriction niust I J C  coiititiuoue, as n function 01 
a l l  variables and the partial  derivative of the function with respect  to each 

variable must exist. By continuous a s  a function of all var iables ,  we mean 

that v E > 0, 3 b (t, x ) s.t. ( f (x)  - f(x*)\l < c whenever llx - x*ll < 4. 
It follows that a Taylor s e r i e s  expansion exis ts  in the neighborhood of t . 
which is a multiple power se r i e s  in  the components of x, and each component 
of f can be expanded in this manner. Since f(x) is holomorphic on S, then 

to each Q 6 S, we can associate a n  open ball  B(a,  r(a)): llx - 011 < r(a), 
r ( a )  > 0 .  Fur ther ,  f (x)  is holomorphic in B(a ,  r(0)). We define 

* 
96 

R S  u B ( a ,  r w ) ,  
a€ s 

and notice that R is open. We  have then an infinite open covering of S and 

may  apply the Heine-Bore1 theorem to obtain a finite open subcovering. 

note that B (a ,  $r (a ) )  is also a n  open covering, and again f rom this,  we may  

choose a finite subcovering by the Heine-Bore1 theorem. 

a. the centers  of the chosen balls that  f o r m  this subcovering, (j = 1 , .  . . , N), 
J 

with 

We 

Let us denote by 

N 
U B (aj, f . (a j ) )  3 S .  

j= 1 

Now take an a r b i t r a r y  point (7 f S 3 j ’  1 - < j - < N such that 

(I € (oj, z r (o j ) )  1 , 

which in turn implies 

1 1 Le., the closed ball  center  6, 1. - u.11 < z r ( a . ) ,  of radius z r ( g . ) ,  is 

contained in the open ball  center Q and radius  r( 0.) .  We define 

J J J 

j J 

21 
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r G  min r ( u . )  > 0 
J j = l , .  ..,N 

and take the ball 

B [ a ;  r ] C  R. 

f is holomorphic in R and hence is holomorphic in each B r a ;  r] . W e  have 

now R C ~ .  l ip tho rcqiiirct1~onts for oiir cxisfaiic-c thcorcnl to hold. Our r re- 

places t.ha L, 01 Lhc cxistancc thmrc in ,  f(x) j ,  holotnorpliic i n  11. - 112 r ,  
U E S, S is closed and bounded. The n o r m  if(x)l/ < M in 

so that we may choose L J r/2M to give ML = r /2  < r(z! b ) .  

U B [u;  r] - 
acs  

We now choose t l  E d such that  t # t*, and d 
1 Y ( t l ,  t*) - < L .  

The point x( t l )  E S ,  and so i t  exists up to t l .  

the initial conditions o r  initial point of a solution with t l  instead of to, we 

may  apply'our existence theorem and s o  obtain a solution along X for a 

length L - < r/2M. 

solution at least as far as t a n d  the theorem stands. 

Using this x ( t l )  as 0 c K c S ,  

W e  may  choose L = r/2M, and s o  we have continued the * 

2.3 THE TWO-BODY PROBLEM 

In our  proof of the existence of periodic solutions to the r e s t r i c t ed  

three-body problem, we shall  require what we cal l  "start ing solutions." 

Frequently,  such solutions can be obtained by putting the smaller of the 

p r i m a r i e s  eqiial to zero and thus obtaining the two-body problem. Then 

by analytical  continuation of the solution in p ,  the m a s s  of the smaller 

p r i m a r y ,  we obtain periodic solutions for  the res t r ic ted  three-body prob- 

lem. In the following paragraphs we shall  be m o r e  explicit about this. 

In Euclidean 3 space,  the problem of two bodies is defined by  the pa i r  

of differential equations 

- 3  m l z l  = k m  1 rn 2 ( 6  2 - 6 1 h  

-3 m2Ez = k m  1 m 2 ( 4, - W l Z  
(46) 
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1’  42, 
m2 have position vectors 4 1’ where,  a t  t ime t ,  the point masses  m 

respectively,  and r 1 2  = 41 - 42 is the distance between the two mass 

points. Adding the pair  of Equations (46) leads to the conservation of 

1 i n  ea r itiorncn tu tn , ria rnel y 

m1 i, 0 

mlS1 t m2t2  = const. = Y , ,  s a y .  (47) 

Integrating again gives 

- 
where  m = m , 4- m2. 

constant velocity on a st raight  line. 

The motion of the center  of mass 4 is ,  then, one of 

W e  now t ransfer  coordinate origin to the particle (point mass) m,. 

To this end, put 

5 = 52 - 5 ,  

S O  that we obtain the single equation f rom Equation (46) 

- 3  .. 
I =  -km[r 

12 = 141 - 421 = I4 where  r = r 

The problem defined b y  Equation (48) is more co r rec t ly  r e fe r r ed  to 

as the Kepler Problem. 

problems is 

The relationship between the solution of the two 

where  Y = Y I t  -+ Y 2 .  

NOW 4 is the vector (x1.x2,x3), so  that r = Jm, and 

Equation (48) is, in fact, three scalar equations 
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w!ierc p t km, so that the Equation (48) is not trivial. We commence our 

Rearch for a eolution by  forming the vector product of Equation (48) with 

6 to give 

c x t = o  

which it\tcgrikt.c8 to 

4 x 4 = const. = c (49) 

since 4 x 5 = 0 .  
the sca l a r  product of Equation (49) with 4 gives 

Equation (49) is known as Kepler's Law of a rea .  Forming 

o =c.~c'>cA( (50) 

on using the cyclic law applicable to the tr iple s ca l a r  product 4 x 4 . 4 .  
Equation (50) s ta tes  that  the motion is perpendicular to a fixed (constant) 

vector and is, therefore ,  in a plane, 

Now consider 

Integration gives us immediately 

4 =+ x c = P = const. 8 ;  

24 
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Taking the dot product of th i s  equation with 4 gives 

and therefore  

Now, 6 p = r IpI c o s 4  and s o  Equation (52) becomes, on solving for r ,  

which is of the fo rm 

P 
1 - € cos+ r =  

The equation of the orbi t  is that of a conic section. 

giving a n  ell ipse (or in the c a s e  6 = 0, a c i rc le  as a special  case) ;  i f  6 = 1, 

we have a parabola,  and for  E 7 1, a hyperbola. 

dinate center  is a t  a focus. 

If E < 1, r is bounded, 

W e  notice that the coor-  

Notice that the motion is on a s t ra ight  line i f  and only if  Y = 0 since 

6 x 4 = Y = 0 3 that 4 is in same or  opposite direction to 4. 

We wish to obtain the position of the par t ic le  in  i t s  o rb i t  as a function 

of time. 

represent  4 by r(o where t 2  = 1 ,  differentiation of the latter gives e o - i  = 0 

s o  that 

€€owever, this can only be accomplished formally a s  follows: 

0 

4 = r io t r t0  , and hence 

25 
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(53) 

Now we may wri te  

ic/l = u C O S C ~  t v sinp = e 
60 0 0 

Therefore ,  on substituting into Equation (53), we have 

Now a s s u m e  Y f 0 , which implies 

and so 
t = t- l y 3 ;  {( l  - c cos$) 2 d$ 

- 
P 

(54) 

from the interpretat ion of Equation (52). 

The solution is periodic i f  0 5 € 5 1 in which c a s e  we can obtain 
27r 

- 2  2 - 3 1 2  
l ( I  - e c o s $ )  d q  = 2n(l - ) 

0 

which holds fo r  all complex 6 such that < 1. The per iod T is then 

P" 

for elliptic motion. 
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W e  define the e n e r g y a s  

h ; A i 2 - ! !  
2 r 

where we u s e  E to denote a defining equality. Then 

s ince r = e, and so 3 Now scalar multiplication is distributive r b  

over addition so that 

which implies that h is a constant along a trajectory.  

the motion is called an integral ,  e.g., h is an integral  as is each component 

of 4 x 6 b Now on using 6 = r 4, and Equation (53), we have that the energy 

Such a constant of 

Now h C 0 implies that  the t ra jec tory  is bounded for ,  suppose that 

i t  is not, then h -1/2 i2 1 0 for  real E ,  which is cont ra ry  to the 

supposition that h C 0 .  Hence, h C 0 implies that  the motion is bounded, 

The converse is a lso  t rue ,  namely, i f  the motion is bounded, then h < 0. 

To prove this,  we consider the two cases:  (1) the elliptic case ,  Y 6 0, 
(2) the l inear  case ,  Y = 0. For case ( l ) ,  we have y f  0 and 

2 - 2  2 p  2 h = Y R  - -  R 
a l s o  

where R and r are the maximum and minimum values of r,  i , ~ . ,  when 
i 3 0. Define 2a =I R + r and 80 

27 
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2 2 p r R  = Y 2 a .  
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Starting again f rom Equations (57), we multiply the f i r s t  by R and the 

second by 7L and add to give 

2 2a e Y  - - 4 p  R 

= 2f l  

on using Equation (58). Now R + % = 2a, and so  

h = - -  e 0 .  2a 

Incidentally, we s e e  that the energy is a function of the major  axis 

alone and is independent of the eccentricity,  E . 
have that y: = 0 and the motion is confined to a s t ra ight  l ine,  hence 

F o r  the second case ,  we 

1 - 2  /l 
2 r '  h = - r  - -  

Since the motion is bounded, r reaches a maximum value where = 0, and 

hence 

F r o m  these considerations, we see that the motion is unbounded for h 2 0.  

We have already noted that the motion is planar ,  which allows the 

motion to be represented in the complex plane. 

p re fe r r ed  over two-dimensional vectors for seve ra l  reasons;  one, of course ,  

is the difficulties a r i s ing  f rom vector multiplication. However, care must  

This representation is 
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be taken i n  the complex, fo r  example, 15 I f 
notation, then 

but = fi. In complex 

and we define a t ransformation,  in the complex, b y  

( 5 9 )  
2 ) = u  

x2 = 2u u as an  equivalent definition af the 2 2  
1 2  which gives x1 = u1 - u 2 ,  

transformation. 

W e  now define the new t ime varia.ble s b y  

t 

= J & *  0 

B y  the superscr ip t  ‘ we mean the operator  d/ds and by  the 

mean d/dt . 
over ,  we 

= uv. Now for any c We fur ther  define v = u ,  s o  that r = 
’ I ,  

dz 1 /  function, z = z ( t ) ,  - dz = - d z  t’ = - dt r ,  o r  k = - r z . Using this,  ds  dt  

and the second derivat ive with r e spec t  to t ime U’ U’ 

r v ’  4 = zu; = zu-  = 2 -  

1 vu”  - u’v‘ 
r 2 [ =  2 -  

V 

2vu” - 2u’v’ 
=-3 u v  

The energy  h t r ans fo rms  to  

u’v’ - p- h = 2- u v  u v  

o r  

h u v  = 211’~’ - M e  

The equation of the motion becomes, then, 



LMSC/HREC ~ 7 8 3 8  16 

which implies 

If we do not have a collision, we can divide by  v to give 

II h 
2 u = - u  

which has  the solution 

(62) u = C C O S ( W S  f /3) 

where c and B are constants (complex) of integration and w = d x ,  
which is r ea l  i f  h < 0 ,  and purely imaginary i f  h > 0. 

both complex, each is equivalent to two r ea l  constants and w = d q  makes 

five constants in all. 

is equivalent to two r ea l  second-order equations. 

functional relationship among h, c and 8. 
obtained for  h, namely, 

Since c a n d p  a r e  - 

However, only four a r e  needed since Equation (61) 

We mus t  have, then, a 

This is jus t  the expression we 

h u v  = ~ U ' V  - /f. 
F r o m  Equation (62),  we have 

u' = - c o  sin(us t 8 )  

and 
- - 

v = u = ccos(Gs  t g )  
c- since s is r e a l  and w may be purely imaginary. 

Substituting these expressions into Equation (63) g' ive s 

Also,  v' = 'i' = - cwsin(Bs t a). 

2 cos (B - s) if h <  0 
/f = -h I c ~  [cos (/?+ B )  if h .O. 
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This allows the calculation of ,  say ,  the real (h < 0) or imaginary (h 7 0) 
p a r t  of 6 in terms of h and c .  W e  have one case  lef t ,  h = 0 .  

2 For the C B S C  h = 0, we have u”= 0, and so u = cYs t and 6 = (as  + B )  , 
- 

u’ = a, v’ = C T ,  and so  p = 2 U 5  is the required relationship. 

case, h f 0 ,  we note that 

In the general  

2 
( 1  -I COS(2(0S t 28)) , 2 2 2 5 =  u = c cos ( u s  48) = -z& 

W e  notice that the motion is on a s t ra ight  line when both o and /9 are  

e i ther  real or  purely imaginary. In the neighborhood of s 1, we may expand 

5 a s  a power s e r i e s  in ( s  - s 1): 
00 

This follows trivially f r o m  the fact that cosine has  a power series 

expansion. If h = 0, the s e r i e s  reduces to a single t e r m  of the 2nd degree. 

W e  have, now, a solution as a function of s that holds for all u f 0, 

o r  equivalently all 4 f 0. 

the solution to 4 = 0. 

Our  problem is this,  can  we analytically continue 

We can mathematically, but physically, we have lost  

t h e  m-paning of t h e  solution, 

2 W e  proceed f rom Equation (62), remember ing  that 5 = u . F o r  u = 0, 

and hence 4 r: 0, we mus t  have 

and the expansion of u becomes 

u = C U n ( S  - s l ) n  = (s - sl) c CZn(S - SI) 2n 

n= 1 n r  0 
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1 This is so s ince cos(n/2 - s )  s s i n s .  On writing 

M 

- 2 c (9 - R 1 )  2n 
n=O t =  (9 11 

we s e e  that 4 has  a ze ro  of second o rde r  at s = s 1  1 

and so 
S S 

00 

t - t l  = 1 u v d s  = 1 (s  - sl)  a n ( s  - sl)'" ds 
n-O 

1 S s 1  

which, s ince it is a power s e r i e s ,  it  is uniformly convergent within i ts  

radius  of convergence and can be integrated te rmwise  to give 

00 

t - t l  = (s - s1)3 bn(S - sl) 2n . 
n=O 

r 
This can be invehted, formally,  to give I 

1 s - s 1  = d n ( t  - t l )  n/3 . 
n= 1 

1 /3 This is a quasi-power s e r i e s  in t - t l ,  which becomes,  on putting (t - t l )  t = 2, 
a power s e r i e s  in z .  Hence 

We s e e  then that 4 is continuous through the collision at t ime t = t l ,  since 

for a collision 4 = 0. 

problem is continuably through a collision, this function cannot be sa id  to  

Although w e  have found that the solution to the Kepler I 
32 
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sat isfy the Kepler eqliation a t  4 = 0. In fact  we do not c la im this,  but just 

that the solution as a function in its own right is continuable through 4 = 0. 

is continnous a t  t if considered as a function 1/3 
1 W e  notice that ( t  - t l )  

of a real variable,  however, when considered in the complex, i t  has a singu- 

l a r i t y  a t  t = 
tlia Ringiili1rity as a hranch point of o rdc r  2, i n  fact ,  thcn, a n  nlgrhraic  branch 

point, Notice that the der ivat ivcs ,  x = 1/3 (t - t1)-2/3, of z = (t  - t1)1/3 with 

respec t  to t ime t becomes unbounded a t  t = t l .  

3 F r o m  the known behavior of &at the origin,  we recognize 

The t ime derivative of 6 is 

t ) - 1'3 t S  ..* 2 4 = -e( t  - 
3 4  

5' which is singular at t = 

2.4 THE ELLIPTIC RESTRICTED THREE-BODY PROBLEM 

The equations of motion of the three-body problem a re  given immediately 

by  Equation (4) on putting n = 3; at  the same t ime,  we change notation to  

gk = Xk (k = 1, 2 ,  3) to give 

Now the equation for k = 3 is 

- 43) (42 43 - 3 (91 - 93) + 3 1 m2 m 

r13 r 2 3  

- -  .* 

which we notice is invariant i f  we allow m - 0 .  In the l imit ,  the equations 

for  k = 1 ,2 ,  become 
3 

, I  m2 
Q1 = - 3 (42 - 91) 

r12 

m. 
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respectively,  which a r e  the two-body equations of motion, 

the solittion of Ecpiations ( 6 5 )  any of the Keplerian orbi ts  but r e s t r i c t  ou r -  

se lves  to elliptic arid c i rcu lar  since these a r e  non-degenerate periodic solutions. 

I f  a n  elliptic orbi t  is chosen for  t h e  re la t ive motion between m 

we have the elliptic res t r ic ted  three-body problem, and i f  the relative motion 

i e  c i r cu la r ,  then we name this the res t r ic ted  three-body problem. 

t l o v t ~ l o p  the oll i l ,t ic c a s e  arid, when :ipproprialc, rctluco i t  to tlio c i rcu lar  

case. 

W e  may choose as 

arid m2, then 1 

W e  shall 

Our f i r s t  s tep  is to normalize the m a s s  so  that ml f m2 = 1 and s o  

obtain 
- .. 

qo - -qo 1 ~ ~ 1 - 3  

where qo  = q2 - q l ,  
of coordinates is a t  the center  of mass ,  

q1 = - m 2 q 0 ,  q2 = mlqO,  ml  + m2 = 1, and the origin 

F o r  the third body, the one of 

insignificant mass, we have 

W e  represent  q by 0 

is 2 1 - E  e - 
90 - 1 - € cos 8 

S where  
- 2  

t = (1 - E )  '12J(1 - €case) d a ,  
0 

which we now show is a solution of the two-body problem, W e  define 

z1 = A m  G ~ ; ~ O ,  z2 = lzl , z3 = a r c s ,  z4 = -arc Z 

where 
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Fur the r ,  b y  r we denote 1 qo 1 and s o  
0 

- - *  q o Z  = ro -t i z  g q 
l o o  

and so Re ( q o Z )  = 
have 

and so  

2 r - z1 . Now, f rom the definitions of z 2  and z4, we 0 

-i z4 
Z = z 2 e  

( - i z 3 - i z 4 )  

= r 0 (1 - z2 cos(z  3 4- “4)) . 

2 
z 1  = r 1 - z Z h e  

0 

Solving for ro gives 

Using this expression fo r  r, and solving the definition of Z fo r  6, with the 

appropriate  substitutions gives 

i.e., z 1  is constant. 

Now, 
- i z3 

= % ( r 0  t i r  z ) e  s, 40 0 3  

= r i  t i r  2 i 
0 0  0 3 ’  

Taking the imaginary pa r t  gives 

2 .  

- 2  - -  23 = l o ’  
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Now 
-2 i z 3  

i = i i 3 i  t i z l  ro 

-2  i z 3  3 i z  -2  = i z  r e + i z l ( - e  r ) = 0 1 0  0 

-i z4 
nut 2 = Z 2 0  , honco, 

i2 = 0, i , = o .  

W e  now introduce 
t 

s = f z r -2  d r  1 0  
0 

(73)  

-2 2 -1 = 1 .  = z r  I / -2 
1 0 ro z 3  = i 3 t  = z r 1 0  and so 

W e  now denote the initial value of z by , so we may wri te ,  f r o m  

Equations (66) ,  (67)  and (68)  

0 1) 0 0 z1 = z l ,  z2 = Z 2 '  z 3  = 6 t z 3 ,  z4 = 2,. 

= 6 ,  0 < E < 1. Using these values to calcu- "2 W e  take k3 = g4 = 0 and 

l a te  r and ro gives 
Omin max 

02 -1 = z1 02 (1 t 0 - l  . 
= z1 (1 - E )  8 r 

max Omin rO 

0 2  2 -1 
a = z l ( l  - e  ) . 
0 

The representat ion we have chosen for our  solution requi res  that a. = 1, 

so we must  choose 

2 02 
"1 = ( l  - E ) *  
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W e  s e e  then that 

i s  i z  2 
e 3 -  - ( 1 - € )  

g o = r  0 e 1 - € C O S S  

To complete the proof that our chosen representation is a solution, we need 

an  expression for  t. We have, on differentiating Equation ( 7 0 ) ,  

1 2 -1 
i ro z l  

t ’ = - =  

and so  

Le., 

t = i 3  ](l - ~ c o s a ) d a ,  1 
0 

S 

t = ( l - E )  1’2 f (1 - c c o s u )  -2 do, 

0 

(75) 

as we required. 

The next task  is to find a coordinate sys t em in which both ml and m2 

a r e  at rest, 

mass ive  bodies,  and put 

We choose x l ,  x2 as coordinates in the plane of motion of the 

(j = 1 , 2 )  

Then 

where  x forms a mutually perpendicular right t r iad  with x and x W h a t  

f i x  fo r  the f i r s t  two coordinates of we have done then is put x = x1 

q = ( X ~ P  X2, x3) 

s, of Equation (67). 

3 1 2‘ 

2 
The now complex numbers q l ,  q2 have been computed f r o m  

We now wr i te  the three  scalar  equations f r o m  3 in Lagrangian form,  

To this end, we define 

37 



LMSC/HREC A783816 

"2 

r Z  
t -  1 

1 

m 

r 

which gives 

(k = 1 ,2 ,  3) d 
dt LAk = L X k  

a s  the ecpiations of motion, whore r l  = {Ix t rn2l2 t x i  )1'2 and 

112 
= (1. - m,[ t xi} , W e  verify this by d i rec t  substitution f r o m  '2 

(77)  

Equation (77). 

W e  have that L. = xk ' and .'. LHS of Equation (77) is jus t  Gk, 
Xk 

- x:)) - ?(uk - xr)) (k = 1,2) 

'1 

which is  jus t  the kth (k  = 1,2) component of Equation (64), and 

"1 m2 
3 x3 - 3 x3' 

'1 r 2  

- - -  - .. 

We must  now apply the transformation theory that we have studied. 

we note the explicit dependence of L on t through the s,, 
F i r s t  

We introduce 

the t r ans  formation 

Now f rom Equation (77) 
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where ,  reca l l ,  r = lgol and, now, 
0 

'rho purpose of this tra.neforrrintion W ~ R  to br ing  the two maseivo par t ic les ,  

m l ,  m2, to r e s t ,  Now f r o m  Equations ( 6 6 ) ,  we have 

= "1% 91 = - m 2 q Q '  q2 

yielding 4 = - m 2 ,  t2 = ml . and 8 0  q051 = -m2q09 q052 = "11, 1 

We have then fixed the mass ive  par t ic les  and so  we have fixed the singularit ies.  

This t ransformation may be looked upon as t ransforming  the relat ive motion 

of m l  and m 

pulsating and a non-uniformly rotating coordinate sys tem,  

to an equi l ibr ium motion, Geometr ical ly ,  we now have a 2 

Finally,  we pe r fo rm a t ime  t ransformation to  s by  using 

= p > o  2 - 1  t ' = ro z, 

which a l s o  defines p .  Notice that 
7 

t hr 

and that we denote dependence on 8 by 

that  

and b y  we mean d/ds, so  

where  f has components t2, I ,  

The new Lagrangian is 
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and on performing the necessary  operations, we obtain 

Our par t icular  choice of Lagrangian has preserved  the fo rm of the Lagrange 

equations, Explicitly our  new Lagrangian is 

We now put 

JL = a = (1 - ccosCp)-l 
2r0 

a function of 8 .  

expand the right hand s ide,  remembering that q 

to give 

W e  bring aU to the left hand s ide of Equation ( 7 9 ) ,  and then 

and 5 a r e  complex numbers ,  
0 

2 + r  
0 

r '  

r 
0 

We have calculated Re in the following way, Recall  that  
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- 0  = r i  t i r  2 .  z 
0 3  W O  0 0  

iz3 
, and z 3  = 8 .  Introducing p into this equation gives qo = r o e  since 

- 2 -1 = r i .  t i r  p go40 0 0  0 

which, on multiplying by p givcs,  on the left hand s ide,  coqG, and for the 

f i r s t  t e r m  on the right hand s ide,  rorL. Using this gives 

Recall  that  5 = 6, t i t2 and hence (’= 4; + i 4; and 7 = t1 - i e 2  , which 

allows us  to wri te  

which we have used in Equation (801, 

hand s ide  of Equation (80) even fur ther ,  gives 

Expanding the expressions on the right 

L 

’ + I 3 @  . + - r (414; I& 0 

0 

NOW, f rom q,o = - s r o  -,, we obtain the f i r s t  integral  

is Now, $ = (r; t i r o )  e , S O  that 
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1 f 2  2 1 
t ro) - - r ho = zp (ro 

0 

2 2  and finally on multiplying by  p /ro , we have, on rearranging and transporting 

2 2 

r 0 

2 r‘ 
1 0  - ;+ps. z-2- r = 4 h o  r 0 

0 

1 = z in our  case, But we have established in Section 2.3, that h = - - We 1 

2a0 

now put 

and eo 

Using Equations ( 8 2 )  and (83) allows us to wri te  Equation (81) a s  

Lagrangian. To do so, we need the following theorem: 

Lagrangians differing only b y  the total t ime derivative of a well 

behaved function of x and t give rise to equivalent Lagrangian sys tems.  
This may  be looked upon as a uniqueness theorem. We mus t  now prove this. 

Consider two Lagrangians,  f(x, k, t )  and g(x, k, t ) ,  differing by  a total 

t ime derivative ~ ( Y c ,  t). We may  write f = g + L, Now 

n 

and so  
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n 

k (i % ) - c h  j = l  x x  j k 2 j - h  t x  

n 

k t x  = Lx g + -& (ii.,) - h k - h 
k J =  xjxk j 

provided he o r d e r  of differen-iation can be reversed .  

2 
To drop  the expression $ [ (2 - 2) R - - 1 - r:, R’l , we must  show 

ro 

that it is the total time derivative of some function of < and s for  these 

cor respond to the x and t of our  theorem. Now, factoring out the ro/z  

f r o m  the f i r s t  t e r m  gives 

2 
1 

on substituting for  R and R’. 

m u s t  have 

If the above expression is to be h’ then we 

and hence 
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For  this to be so, we need 

To show that  this is so, we note that the energy intergal,  Equation (82), 
m a y  be  writ ten as 

Recal l  that  

B O  that  

On using his and mu1 

2 r t ‘ = p = -  0 

z1 

iplying by r,”/zT, the energy integr .1 becomes 

1 + + z -  
r 
7 

i 

0 

Z 

2 r 
1 0  
2 2 .  

i 

-e- 

z 

We have then as our  final Lagrangian 

where v 2 = C1 12  + 4,  /2 t 4;“ 

We now t ransform to the Hamiltonian fo rm in prec ise ly  the way described 

in Section 2.1, 

of the massive bodies, 

Our in te res t  l i e s  in periodic solutions in the plane of motion 

We make the res t r ic t ion  to two dimensions on putting 

s3 ~f 4; = 0, As before,  the canonical momentum is derived to be 
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I 
W e  solve t h i s  pair  of equations for  4 1, S i ,  so that  

Following the scheme given in Section 2.1, we put 

and so 

Our equations of motion a r e  now obtainable a s  

(k = 1, 2). 

This is as far as we need take the elliptic r e s t r i c t ed  three-body 

problem, for a t  this point, we a r e  ready to discuss  the existence of periodic 

solutions. 

2.5 PERIODIC SOLUTIONS OF T H E  RESTRICTED THREE-BODY PROBLEM 

To reduce the elliptic res t r ic ted  three-body problem to the ( c i r cu la r )  

r e s t r i c t ed  problem, we s e t  = 0, which yields a ( s )  1 and t = s. The 

Hamiltonian is 

1 2 1 2  2 
H = - 2 [(Y1 4- x2) 4- (Y2 - x l q  - u - z (xl t xz) 

45 



8 
1 .  
8 
1 
1 
t 
I 
8 
1 
1 
8 
I 
1 
I 
I 
8 
8 
I 
I 

LMSC/HREC ~ 7 8 3 8 1 6  

. The equations of motion a r e  of the 
m2 

-t 
m l  where U = I x +  ”2J I ”  - “11 

Hamiltonian form,  namely, 

a -  

Xk = H ,  yk +k - Hxk ( k =  1 , 2 ) .  

2 Now, i l  we pnt x r: x -t- ix (i 7 - l ) ,  wo may write Equation ( 8 5 )  as 1 2 

x f- m7 x - m, 
L 1 

- m l  3’ - m2 Z t 2 i x t x  = 
I x  - 4 . I x  + m21 

It is periodic solutions of this equation that a r e  of interest ,  

what we mean by a periodic solution, 

periodic in t i f  for some T ,  f ( t  t 7) = f ( t )  fo r  all t. La te r ,  we shal l  s e e  

that there  a r e  equivalent conditions for periodicity that are  more  useful for  

our  purpose, We shall  prove and use the following periodicity conditions, that  i f  
f(o) = f ( 7 )  and f‘(o) = f’(r) then f ( t  4- 7) = f ( t )  for all t ,  The converse 

also holds,  so our periodicity condition is equivalent to our  definition. Fu r the r ,  

to br ing our  notation in line with that of cu r ren t  l i t e ra ture ,  we put m2 = p ,  

We must  s ta te  

Formal ly ,  we call  a function f( t )  

* = 1 - c ( = / L *  m l  

We now survey  briefly the classes  of periodic soiutions knuwn io 

exist. 

jus t  that  such solutions do in fact  exist, 

These solutions a re  not necessar i ly  known even in implicit fo rm,  but 

1 ,  

2, 

3, 

The Libration Points. These a r e  the equilibrium solutions of 
Equation (84)  and a r e  readily shown to be five in number;  th ree  
on the rea l  axis separated by in1 and m2, and one each s ide 
of the r ea l  axis, forming an equilateral  tr iangle with m l  and 
m2 

Motions near  the triangular l ibration points. 
the ma t r ix  of second partials evaluated a t  the appropriate  
l ibration point a r e  all purely imaginary,  

Eigenvalues of 

Motions near  the libration points on the r ea l  axis. 
l eas t  one eigenvalue is real ,  and a t  l eas t  one is imaginary.  
These l ibration points a r e ,  then, unstable,  but some periodic 
solutions exists fo r  properly chosen initial conditions. 

Here ,  at 
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1x1 >> 1. Intuitively, w e  suspect that periodic solutions do 
exist ,  since we may look upon this ca se  as a perturbation of 
the two-body problem. 
can be proved, 

The existence of a lmost  c i rcu lar  orb i t s  

P3 very near  m i  o r  "12, again, can be regarded as a pe r tu r -  
bation of the two-body problem, 

"12 << 1. 
ncar m2, 
three-body problem, with mi  z Sun, m2 Jupiter,  and P3 
being some other  planet. remains close to m 2 ,  we cal l  

a l so  almost  periodic solutions, but the proof is possibly some-  
what m o r e  difficult. 

This is  almost tlic two-body problcm, even for  Pg 
W e  call  this case t h e  planetary case  of thc res t r ic ted  

If P 
this the lunar  case ,  Not only a o periodic solutions exist ,  but 

We shal l  prove the existence of periodic solutions for  the cases  of most  

i n t e re s t  to us. 

of periodic orbits of class 6 ) .  
These are  c l a s ses  5 )  and 6 ) ,  We  shal l  now prove the existence 

Out first s tep  is to move the origin to one of the masses .  W e  choose 

ml  and define 

u = x - m2, 
ac 

and put m- = U ,  mi = 1 - /A = c1 . Substituting into Equation (86) gives L 

3 where  F(u)  I u/  1.1 
"force1I o r  function. If /A = 0, then, the right hand s ide is zero. We notice 

a l s o  that the left hand s ide ----t cb as u --* 0 .  

. We call  the right hand s ide of Equation (87)  the disturbing 

A s  we have indicated ear l ie r ,  a more  suitable periodicity condition 

mus t  be introduced, The periodicity condition that we requi re  is that i f  a 

solution cuts the 4 axis orthogonally a t  two distinct t imes,  then, the solution 

is periodic. 

origin,  so that  P 

we have that 

We  must  now prove this, We choose the axes and ou r  t ime 

l i e s  on the 4 axis a t  a perpendicular crossing. At t = 0, 3 
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- 
z ( t )  = Z ( t ) ,  & ( t )  = - Z ( t ) .  ( 8 8 )  

Now, if  a t  some  l a t e r  t ime ,  to > 0, Equation (88) holds, we s h a l l  prove that 

the solution is periodic,  We introduce 

and eo, 

V(t) = - z (2to - t )  , 

- 
Vft)  = -7: (2to - t )  . 

W e  now wish to show that our different ia l  Equation (86) becomes 

Using Equation (89) and conjugating th i s  reduces to 

= C((1 - F (1 t B(2to - t))) , 

Now - - 
V(to) = z(to) = z ( to ) ,  ?(to) = + ( t o )  = Z(t 0 ) 

where  we mus t  consider  v ( t ) ,  z ( t )  solutions of the appropr ia te  differential  

equations,  and coinside in position and velocity a t  one time point. Hence, 

v(t) = z ( t )  identically, and 

z(2 to)  = E(0) = a ( 0 ) .  

By a similar argument ,  we obtain that  

- 
i ( t )  = - i  (2to - t )  

and, therefore ,  
- 

2 ( 2 t o )  = - i ( o )  = Z ( O ) ,  
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Since the differential equation is autonomous, 

ptariod is 2to. 

tho solution is periodic,  and we have 

z(2to t t )  = z( t ) ,  and so the 

If we have two perpendicular crossings of the rea l  axis ,  then 

z ( - t )  = z ( t ) ,  

and we s e e  that the t ra jec tory  is symmetr ic  about the real axis. 

only  a eulf ic iont  cotvlitioti. 

We have 

Now, z is a function of p ,  and, of course ,  of the initial conditions, 

We may show this function dependence, and at t = we have 

Out intent is to continue analytically the Keplerian solutions obtained for 

p = 0, so f i r s t  we ask: 
with two perpendicular c ros s ing?  It does,  and in par t icu lar ,  for suitably 
chosen axes ,  elliptic orbi ts  have two perpendicular crossings.  This elliptic 

case for  /I = 0 is the one we require,  

Does the Kepler problem admit periodic solutions 

The coordinate sys t em that we have is not pract ical ,  so f i r s t  we put 

and obtain 

2 t 2 i x  - x 4- F(x) = pcl *1’3 (1 - F ( l  4- p * 1/3x)) = Q ( X )  (93) 

If we now put p = 0, the left hand s ide is jus t  the Kepler problem, 

shal l  now see ,  the Kepler motion is s impler ,  

As we 

We define z1 through z4 as follows: 

z 1  = & ~ ( i  t i x ) ,  z2 = I Z J ,  z3 = a r c x  t z4, 24 = - a r c Z  (94) 
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-1  . where  Z x r  t i z  (x t i x )  and r = 1x1 , These variables a r e  called 1 
the ell iptic e lements .  W e  now wish to express x and r = 1x1 in  t e r m s  of 

through z Multiplying Z by  x gives 4 ‘  

jzz = r t i z l Z ( x  t i x ) .  

From tho clcfiriitions 

so we may wri te  

and so 

Now 

2 
2. 

2 R e E Z  = r - z1  

1 = z 1  2 (1  - z2 C O S 2  ) ,  3 r =  
i(Z*’”3 1 

1 - Re(= ) 

;i t 2 i x  

Now, s ince  Kx and XF(x)  are  both r ea l ,  w e  m a y  write  

z 1  = $m~i(ji t 2iic - x t ~ ( x ) )  = LZQ 

f r o m  Equation (93). Differentiating Equation (94) gives 

i (z3  - 24 1 
k = ( 6  t i r  (i3 - z4)) e 

and so 

- .  2 
x x  = r +  t i r  (i i3 - i4), 
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and 

2 .  2 
$ m x ~  = r (z3 - 5,) = z - r 1 

-2 f r o m  the  definition of zl and r. Multiplying throughout by r gives 

-2 h3 - i4 = 7 , 1 r  - 1. 

i(z3-24) 
Now, on using x = r e  , we obtain eventually that  

-i  z4 
s ince  2 = z Z e  . We now define 

i z4 
Multiplying Equation (97)  by e and taking real and imaginary p a r t s  

gives 

z 2  = Re ]S e i z 4 f  

and eventually 

W e  have, with . "1 = $ m Z Q  

four differential  equations for z 1  through z 4 ,  
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Next, we introduce the new independent variable 

t 
8 = J z 1 r  -2 d t .  

0 

(99) 

F o r  a general  function f ,  we have 

f t E - = -  df d f r 2  -1 
ds dt 

We now wri te  our  four differential  equations for z 1 through z4 in the fo rm 

z’ = a (z )  + p(z)  ( 100) 

where z, a,  p a r e  each column vectors with elements zi, ai, pi (i = 1,. . . , 4 ) ,  

respect ively,  and a,[z) = a2(z) = 0, 
2 - 1  

a,(.) = 1 ,  a,(z) = r z 1 = t’, 

m Z Q ,  p2 = - a 4 R e P ,  P3 = P4 = a 4 z i 1  LP P1 = a4  

and finally, 
i zg  i z4 

-1 LZQ - i z  e Q. - 22) 1 P = z  (e 1 

Now Q appears  only in the definition of P, and so i n  p2 . 
independent of Q. 

problem: 

The vector a is 

If Q = 0 (Le., p = 0) , then p = 0, and we have the Kepler 

z’ = a ( z ) ,  

F r o m  our  existence theorem, we know a solution 

z = <p(s, 5 )  

exis ts  and is holornorphic in both s and 5 within some region. 

of a ( z ) ,  we s e e  that the solution is 

On inspection 
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This is the solution of the unperturbed.system, which is the Kepler problem, 

i n  a rotating coordinate system. 

We must  now wr i te  the periodicity condition in terms of x. The form 
is the s a m e ,  since we have only a scale change. The conditions are the 

h x ( t o ,  xo, ko) = 0, & n x  0 = 0 

Now, we have that 

s ince t .  is the initial value of z 

<3 = c4 = 0. 

and so t ,  - f4 = 0,  modulo 7 ~ .  W e  choose 1 i '  

Now 

and so, initially, we have . 

2 t ixo = - i t ,  -1  (t2 - 1). 
0 

We can now simplify the equations, We may  write 

The initial conditions f ,  and 5, have been chosen ze ro ,  so we mus t  now choose 

f,, f, in such a way that x. descr ibes  an ellipse. Now, cpp4 = t , and so 
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But x e i t  represents  a vector in a rotating coordinate system. Putting f ,  = 6 ,  

we s e e  that < determines the major axis. We have that  1 
S 

- 2  
t = {i J (1 - C C O S S )  ds 

0 

which we can integrate i f  s = 2n to give the period, To say: 

- 3/2 2 
TO = 2 n f ;  (1 - e ) 

it Now, in the rotating coordinate system, the vector x e  has  not necessar i ly  

re turned to its initial position. 

The factor eit has  a period 2n and the other  factor ,  a period of T 
0 -  

W e  requi re  that one differs f r o m  the o ther  by a rational factor ,  i ,e,,  

TO 
2nm = 

for  some  integers  m and k. We call this relation a commensurabili ty 

condition, o r  s a y  that the period T is commensurable  with 2n. Now, 
on ensuring that Equations (105) and (106) are s ta t isf ied simultaneously, the 

relation 

0 

m 

. mus t  be  satisfied,  which we look upon as a condition upon f The par t ic le  1 '  
will make k - m circui ts  about the origin before  it c loses  its orbit. 

Now a t  t ime to, x is rea l ,  and & is purely imaginary,  and to itself 

is equal to r m .  

satisfying Equation (107) do indeed give us  a solution. 

superscr ip t  on { and its components to show that it is initial conditions for  

a periodic solution when p z 0. 
conditions are  satisfied,  

sufficiently small 

The values of f i  (i = 1 , .  . . , 4 )  so chosen above, and 

We now put a * 

We have ensured that the periodicity 

To be  able to analytically continue this solution to 

fl  > 0 ,  we must  have some  Jacobian J k 0. 
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then Our periodicity condition requires that if s = so at t = t o ,  

a t  s = s 

simultaneously fo r  0 .  They a r e  sat isf ied for  s z  = nk. 
and for  c3 = f4 = 0. The problem is to sa t i s fy  these two equations 

0 

W e  now compute the Jacobian of z 3,  z4 with respec t  to s ,  <, on the 

perpendicular solution, and evaluate at the initial conditions for  p = 0.  

sha l l  find that the only non-vanishing Jacobian is 

We 

d( * *  
where  

0 < € < 1.  

exis tence theorem for  solutions to sys t ems  differential  equations. 

this ,  we deduce that solutions of Equation (100) a r e  continuous and differen- 

t iable  functions of all their  variables and parameters .  

solutions a r e  holornorphic functions of p .  

= ( f l  , f , ,  0, 0). W e  may a s s u m e  we have a t r u e  ell ipse and so  

Recall  that  the Equation (100) satisfies the conditions of general  

F r o m  

In par t icu lar ,  the 

Now the solution to the unperturbed sys tem,  i.e., Equation (100) with 

= 0 ,  is 

These  give 

Now, we want x to  be  periodic. As  before,  we let 

2 -1 
r = 1x1 = C l  (1 - f ,  COS s )  , 
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and if  5, = 0 and 

3 
i ( l - f l ) s  

, and 3 
= f ,  s e 4 s ince  <p 

x =  

2n In this case, x is always a periodic function of s. W e  next define S = - 3 
1 - f 1  

i f  c1 # 1 . Note that f, = 1 gives the circular solution. For the elliptic 

case, we requi re  o -C t, < 1. 

Now consider 
8 

-2 a ( s )  5 s - p4 = - t: J (1 - t, c o s a )  d o .  

0 

s is increased  by a multiple of 2rr , and we requi re  that s - q4 i nc reases  by 

an  integral  value of 2 ~ .  

is not so necessar i ly ,  but conditionally. We want 

That s - q4 increases  b y  

for some integers k, n. W e  have a condition, Equat 

m a y  be writ ten as 

an in tegra l  value of 2n 

(110) = 2 n n  

on (107), on t,, f ,  which 

and we notice, on choosing 0 < f < I and computing < f r o m  Equation ( l l l ) ,  

that  f o r  tl, t2 so chosen, Equation (110) is automatically satisfied,  As  s goes 

f r o m  0 to 2 nk, r makes k revolutions about the ell ipse (in fixed coordinates),  

and encircles  the origin k - m times,  to  c lose the figure in rotating coordinate 

system. 

We may  as sume  that m is chosen positive, s ince we can  obtain all c a s e s  on  

letting k take positive o r  negative values. 

elliptic orbit. 

2 1 

The figure in the rotating coordinate sys t em is a precessing ell ipse,  

The ratio m/k  is the type of 
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One remaining point of interest  is where the second orthogonal crossing 

of the r e a l  axis  occurs.  

to = nm , s 

exponential t e r m  is rea l ,  and so  we a r e  again on the real axis. 

s e e  that x is purely imaginary,  

We assume k and m have no common factors ,  so that  

= n k .  Putting these values in Equation (108) yields that the 
0 

Fur the r ,  we 

All this has  been done for  p = 0.  

Wc now want to see i f  the conditions we have, namely z3 = nk, 
and initially to ' z4 = nm at t =  

t, = c can  be satisfied if fl  # 0.  For this,  we requi re  the implicit  function 

theo rem which states:  

I f  the equations 

is sat isf ied for  the par t icular  values 

and i f  the iunctionai determinant a (f 1 # 0 0 I fn)h (xl 9 .  . # xni f o in some 
domain combining s , then we can  find * 

y = (y l ,  . . . , ym). NOW, if we can  say  that a ( f l ,  . , fn)h (xl, . , xn) A 0 
* at s only, then we can solve for  the xrs as functions of yrs only so long 

as (y l , .  . . , y 
small, provided the f 1, . , , , f, satisfy cer ta in  continuity conditions. 

is sufficiently * is sufficiently close to s , i.e., IIy - y*u n 
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a s  the f f s  and s ,  5, as the X I S .  

We do want to va ry  p so that p f 0. 

The z3' z4 We now apply this with 

y's will be c1 and p .  

with a suitable variation in 5,.  
implicit  function theorem can be applied if  8 (z z )/a (s, t,) f 0. 3' 4 

We have no need to va ry  c l ,  since we can do this 

This 

The 

determinant  is 

1 0 
0 f o  

"4 f z  

provided z f 0 .  NOW 
t 2  S 

-2 = t: J (1 - t2 c o s a )  d o  =4 
0 

and so  
9 

We mus t  ensure  that this condition is satisfied. 

continue our  elliptical Keplerians solutions for  sufficiently small 

Jf it is then, we can  analytically 

p > 0. 

2.6 STABILITY METHODS 

W e  begin the discussion of this topic with a definition of stabil i ty 

(Reference 3) for  periddic solutions of a Hamiltonian system. 

tr ictions to Hamiltonian sys tems and periodic motions is no limitation in  

the c a s e  of the res t r ic ted  problem of t h ree  bodies with which we shal l  be 

principally concerned. 

The res- 

To fix ideas, l e t  u s  consider  a Hamiltonian s y s t e m  

and let 
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to he a periodic solution of Equation (112) such that 4 = x(0, 4 ,  v ) ,  
For this solution, we s e t  E = Y and define R and U as follows: 

domain of thc rcal  x-y space,  of dimension 2n, on which E , Exk (k  = 1, ...) n) 

a re  uniformly Lipschitz continuous, and R contains ou r  periodic solution 

x - x(t),  y = y(t); and by U we denote any open eubset of €2 which is a l so  a 

neighborhood of our  selected periodic solution (1 13). 

intersect ion of the neighborhood U with the surface E = Y ,  we have a 2n-1 

dimensional neighborhood of the intersection, a,,, of ou r  periodic solution 

with the hypersurface E = Y.  W e  then speak of stabil i ty of a conservative 

sys t em a t  a periodic solution i f  f o r  each neighborhood UY of the given 

periodic solution there  exis ts  another neighborhood Vy such that all the 

intersect ions of the t ra jec tory  through any point of Vy and the surface 

E = Y lie in Uy. 

satisfying the above requirement  is a y  itself. 

s a y  that the stabil i ty is mixed. 

= y(0, 4 ,  q) .  

R is the 

yk 

BY introducing UYt the 

We s a y  that the solution is unstable if the only point s e t  

If neither hold, then we 

Now we can look upon the solutions of Equation (112) as defining a 

mapping, S ,  on points of E = Y with the periodic solution (AA3) defining 

a fixed point of S', for  some q = 1, 2, . . . , n, n finite. 

m a y  define stabil i ty of a mapping in the neighborhood in a similar manner ,  

namely, that  for  every  neighborhood U of a fixed point of a mapping S we 

requi re  the existence of a neighborhood V such that all the images,  

including images of the inverse mapping, lie in U . Instability and the 

mixed case is defined in a similar way. 

F r o m  this ,  we 

5 9  
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W e  now deduce one simple consequence of our  definitions, i.e., to be 

s table ,  a mapping must  have an invariant neighborhood of the fixed point. 

The proof of th i s  is given by Siege1 (Reference 3) as follows. Now i f  there  

exis ts  an invariant neighborhood V C U for every  U, then the mapping is 

s table  for  all the images of points of V lie in  U s ince V C U. 

tho mapping stable,  and let D C U be a neighborhood of the fixed point euch 

that Dn = SnD C U for  all n = - -  tl, t2, . .. Then the set 

We now suppose 

. 
V = U D  C U ( D o  = D) 

n n  

is invariant under the mapping S. Clearly,  for  a continuous closed invariant 

curve ,  6 ,  containing in its interior the fixed point, a, implies that  the point 

s e t  contained within 

existence of such an  invariant curve is, then, a sufficient condition fo r  

stability. 

invariant curves  surrounding the fixed point, a ,  of a measu re  preserving mapping 

that we shal l  base  our stabil i ty studies. 

is invariant and so the mapping is stable. The 

It is upon a theorem of Moserts  concerning the existence of closed 

W e  shall  now review the tools available to  study the stabil i ty of periodic 

solutions of the res t r ic ted  problem of th ree  bodies. 

a re  Area  Preserv ing  Mappings, the Normal F o r m  of the Hamiltonian and the 

Reduction of Perturbations.  

The three  most  important 

2.6.1 Area  P rese rv ing  Mappings 

Within this appendix, we shall introduce the principles of a rea-preserv ing  

mappings as tools in the study of stability problems of periodic solutions of the 

res t r ic ted  three-body problem. Now, we know that  the solutions x = x(t, 5 ,  V )  , 
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y = y(t, e ,  q ) ,  where 6 = x(0, 4,. Q), rl = y(0, 5 ,  Q), of a Hamiltonian sys t em 

x - Hy, 

(x, y) in phase space (Reference 3). 

par t ic le  of the res t r ic ted  three-body problem may be expressed  in  Hamiltonian 

f o r m  as follows: 

y - -Hx define a mapping of the initial conditions, 4, Q onto the point 

The equations of motion of the mass l e s s  

xk = E 8 $k = -E (k = 1, 2) 
"k yk 

where  

Now, for  a sensiblemotion, at l eas t  one of the Eyk o r  E 

initially, and using this fact and the Jacobi integral ,  we can reduce this 

mapping, near  a periodic solution, to  a mapping, s ,  of a neighborhood of 

a two-dimensional plane in  phase space into another neighborhood of the 

f 0 (k = 1, 2)  Xk 

plane and s is area preserving. 

importance that, perhaps,  we should establ ish it. 

of a periodic solution, and such has been shown to exist by methods of 

analytical  continuation (References 2, 3 and 9). 

This r e su l t  is of such  fundamental 

We requi re  the existence 

Now, 
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* 
so that  we may choose initial values 

such tha t  E 

periodic solution. 

x2 = 0 and x 

consider a neighborhood, B, of t* with t: = 0 , 

s ta r t ing  in  B again p ie rce  the surface q 2  = 0 in a s e t  Bl, say. Regularity 

of the solutions as functions of the initial conditions ensure  such a neighbor- 

t = ( t l ,  t2,  q l , v 2  = 0) of (xl, x2, y l ,  y2) 

f 0 at t = to = 0 , and we must  be sufficiently c lose to a 
x2 

Clearly,  the position of the two mass ive  bodies, x1 = 1 - p ,  

Now, = p, x2 = 0, a r e  singular points and must  be avoided. 1 

such that all solutions 

hood B,  and Bl will be a neighborhood of the t ra jec tory  with initial conditions 

all those points being on the t ra jector ies  connecting the points of B to B'. 

W e  now display this diagramatically. 

6 2  
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We now use  the solutions to map this tube, which we consider as initial 

conditions,into points x. W e  choose reasonably smal l  t with the view of 

lotting t-0, eventually. After a time t,  then, the solutions map U into 
1 

where U1 is the tube commencing at B1 and ending in B r  B1 and 

Now, the mapping i8 a r e a  p re -  

U1' 

are  not necessar i ly  p lanar  eurfacoe. i 
serving,  and so 

where  V(S) is the Lebesque measure of the set S. Now let R be  the subset  

of U lieing between B and B1, and R' be the subset  of U1 , lieing between 

B' and B\. Then, 

V(Ul) t V(R')  = V(U) t V(R1) 

Now, i f  we have chosen B suitably, we may  wri te  Equation (118) a s  

n I ~ J W ,  we use  the solutions, 
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to t ransform to the new integration variables (,, 5 2, rl 1, t. 

This gives 

R' R 

Now for t = 0, j12 = -Ex f 0 and ( z f )  = I, therefore  J = -E , 
2 x2 

Substituting for  J and dividing throughout by t gives 

R R' 

Now, proceeding to the limit a s  t + 0 , we have that  R-+B 

and so we have 

B' -+ B' 

we have reduced the dimension of the neighborhood to 3 but have los t  the 

measu re  preserving quality of our  mapping. We m a y  now r e s t o r e  this on 

using t h e  Jacobi integral ,  which is just  E itself. 

a constant and we wish to use  this to substi tute for  4 
this t ransformation is jus t  1/EX2 f 0 by choice of init ial  conditions. O u r  

integral  then becomes 

Now we choose E = Y  

The Jacobian f o r  2' 
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and s o  

B B' 

But now, E is independent of t ime t and so, o n a  par t icular  solution, E has the 

s a m e  value when evaluated on B or B'. 

point s e t  in B as in  B' and then B and B' are the Cartesian product of some 

So we l e t  Y va ry  over  the s a m e  

s e t  F and F' with Y respectively, where F and F' have points ( 4  1' V, ) '  

We now s e e  that 

F F' 

and we have an  a r e a  preserving mapping in  the plane I I  

where  E = Y is solved for x2 = 4, initially. 

= q2 , and 

Now we know that such a mapping has  a normal  f o r m  and can be  classif ied 

by the determinant  of the l inear  terms. 

we have instability, i f  elliptic, then if the substitution car ry ing  it to the 

normal  f o r m  is convergent, then it is stable. 

this substitution does not preclude stability. 

3, we reca l l  that  the existence of closed invariant curves  surrounding the 

If the mapping is hyperbolic, we know 

However, the divergence of 

F r o m  our  discussion in Section 
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fixed point are  a sufficient condition for  stability. 

has a theorem which concerns invariant curves  to a per turbed stable area 

preserv ing  mapping. 

Now Moser  (Reference 1) 

It is this,  and we shal l  apply it to our problems. 

Let there  be given an  a r e a  preserving mapping, Mo: 

el  = 8 t a(r) 

T1 = 

which we recognize as the normal  form of an  area preserv ing  mapping i n  

plane polar coordinates x = r cos0, y = r s i n e .  We call this a twist  

mapping. Let 

= 8 t a(r)  t f(0, r )  

r = r t g(0, r )  
(124) 

b e  a perturbation of this mapping then under cer ta in  conditions this mapping 

has invariant curves  near  concentric c i rc les .  

concerned, his application to  the rest r ic ted problem of three bodies is of 

p r ime  importance. 

So far as we a r e  immediately 

In References 3 and 4, the mapping near  a fixed point is shown to be,  

in complex form,  
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where F vanishes a t  l ea s t  quadratically at the fixed point Z = 0, and 

Z = x =t iy. It is area preserving if 

Such a mapping m a y  be transformed to 

where s is an  even integer,  o < s < q-1 and of importance later /3 = 0, $1 o r  

-1, and B is independent of the choice of q > s  t 1. 

0, (IwI 

applicable and even fur ther  that the mapping is s table  for  fl  # 0. 

number (Y must  be such that 

Ignoring the e r r o r  t e r m  

Moser ,  then shows that his theorem is s i - 2  
), one has a twist  mapping. 

The 

v = 1 , 2 ,  ...) s + 2 .  VCY 
27r - f integer 

We need only compute CY, fl  approximately. The application to the three-body 

problem, with which he follows the main resul t ,  is of par t icular  i n t e re s t  to 

us. He re s t r i c t s  his considerations to l'sufficiently small p > 0.l1 We are  

in te res ted  in finite values of fi  , in par t icular  p = 1/80 

I 
I for  the earth-moon 

system. 

given values of p o r  ranges of p and then discuss  the stabil i ty of the system. 

The problem then is to establish the mappings in the fo rm (126) f o r  I 
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In this approach, the method of Moser  (Reference 2) may be applied 

direct ly  to cer ta in  periodic solutions, e.g., f i r s t  kind of Poimare/. 

must  wri te  the mapping defined by the solutions of the res t r ic ted  three-body 

problem i n  the fo rm (References 1 and 3), 

To do this ,  we 

where  s is a n  even integer ,  0 < s < q-1, CY and f l  are numbers  and 

fi  = 0, +1 o r  -1, and is independent of the choice of 4 > s -+ 1. The 

notation 0 ( Iwl q) means that f o r  some c > 1, the inequalities I 

- 1  hold for  IwI < c 

mapping (127). Now Moser (Reference 1) shows us that the mapping is stable 

for  fi  +O. 

these values need only be computed approximately fo r  the only values of f l  
possible are 0, -1 o r  -1. 

and p t a s  I where G is the perturbation of ou r  twist  

We must  compute (Y, B for  the selected mappings and iur ther ,  

2.6.2 The Normal F o r m  of the Hamiltonian 

The second method useful i n  the study of Hamiltonian sys tems is 

the normalization of the Hamiltonian. 

to Arnol'd (Reference 5) and is of particular i n t e re s t  for  equilibrium solutions, 

The most  recent  development is due 
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e.g., the l ibration points L4, L5 of the r e s t r i c t ed  three-body problem. 

BirWloff (Reference 6 )  has  shown that the Hamiltonian can be writ ten in the 

form 

Now ArnolkPs thoorom sta tes  that if 

1. A, and A, a re  purely imaginary 

2. A l / A 2  4 m where m is some set of measu re  ze ro  on the r e a l  axis. 

3'. @ =  a h 2  2 + pA,A, + Y A ,  2 f 0 

then the equilibrium solution x1 = y1 = x2 = y2 = 0 is stable. 

h a s  been applied to the equilateral  l ibrat ion points of the r e s t r i c t ed  three-  

This theorem 

body problem by LeontoviE (Reference 7). This method does not appear  to 

have a d i rec t  application to the problems we wish to study although there  

may be  an  application to the study of the rate of growth of the divergence of 

1' motions near  L 

2.6.3 The Reduction of Perturbations 

Tasks 3 and 4 are intended to find the deviation of per turbed motions 

f r o m  the nominal after a finite time. 

and generate  these  motions numerically,  but the computed behavior is not 

proof, only a n  indication of the nature of the motion. However, it may  be  

possible to u s e  Arenstorft s Reduction of Per turbat ion method (Reference 8). 

One method is to  use  a digital computer 

69 



LMSC/HREC A783816 

To use  this method, we must  be  able to wri te  ou r  sys tem of differential 

equations as a perturbation of a sys tem with a known solution. A time- 

dependent coordinate transformation is then performed iteratively to reduce 

the per turbed sys tem to the basic  system. 

may b e  used to compute the decay of cer ta in  periodic solutions of the 

three-body problem under the perturbing influence of a fourth body. 

computer program and plot output would effectively display the nature of the 

decay of such a n  orbit. 

It is thought that  this method 

A 
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